Towards the design of a new standard for composite stiffness identification

نویسندگان

  • X. Gu
  • F. Pierron
چکیده

This paper presents a step towards the design of a novel test for simultaneous identification of all the stiffness components of orthotropic composite materials. A simulator was adopted to numerically simulate the whole identification process. Synthetic images were generated and then processed by Digital Image Correlation (DIC) to calculate the strain fields. The Virtual Fields Method (VFM) was used to identify the material stiffness parameters and error functions were finally defined to evaluate the identification error. Two steps of optimization were applied to obtain the best design variables of different specimens and the optimal DIC processing parameters. Four types of test configuration were simulated including short off-axis tensile test, short off-axis open-hole tensile test, off-axis Brazilian disc and offaxis unnotched Iosipescu test and the most promising configuration was identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane

This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...

متن کامل

TOPOLOGY OPTIMIZATION OF COMPOSITE MATERIALS WITH OPTIMAL STIFFNESS AND THERMAL CONDUCTIVITY

This paper presents the bidirectional evolutionary structural optimization (BESO) method for the design of two-phase composite materials with optimal properties of stiffness and thermal conductivity. The composite material is modelled by microstructures in a periodical base cell (PBC). The homogenization method is used to derive the effective bulk modulus and thermal conductivity. BESO procedur...

متن کامل

Application of Central Composite Design for Optimization of Coacervative Extraction of Cu(II) Using Anionic Surfactant

The aim of this work was to develop a new and simple coacervative extraction method for the preconcentration and spectrophotometric determination of Cu(II) in water samples. Dithizone was used as the chelating agent while an anionic surfactant, namely sodium dodecyl sulfate (SDS), was used as extracting agent at room temperature. Central composite design (CCD) based on response surface methodol...

متن کامل

Design and Optimization of a New Voltammetric Method for Determination of Isoniazid by Using PEDOT Modified Gold Electrode in Pharmaceuticals

Isoniazid (INH) was studied with regard to its electrochemical treatment on a strongly alkaline solution of a poly (3,4-ethylenedioxythiophene)-modified gold electrode, using both cyclic voltammetry and controlled potential techniques. This composite electrode exhibited 4-fold higher oxidation of INH, in accordance with peak densities, than the bare gold electrode. It was used the central compo...

متن کامل

Design and Optimization of a New Voltammetric Method for Determination of Isoniazid by Using PEDOT Modified Gold Electrode in Pharmaceuticals

Isoniazid (INH) was studied with regard to its electrochemical treatment on a strongly alkaline solution of a poly (3,4-ethylenedioxythiophene)-modified gold electrode, using both cyclic voltammetry and controlled potential techniques. This composite electrode exhibited 4-fold higher oxidation of INH, in accordance with peak densities, than the bare gold electrode. It was used the central compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016